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Abstract: The multivariate GARCH (MGARCH) model is popular for analyzing

financial time series data. However, statistical inferences for MGARCH models

are quite challenging, owing to the high dimension issue. To overcome this diffi-

culty, we propose a network GARCH model that uses information derived from an

appropriately defined network structure. This decreases the number of unknown

parameters and reduces the computational complexity substantially. We also rig-

orously establish the strict and weak stationarity of the network GARCH model.

In order to estimate the model, a quasi-maximum likelihood estimator (QMLE) is

developed, and its asymptotic properties are investigated. Simulation studies are

carried out to assess the performance of the QMLE in finite samples, and empirical

examples are analyzed to illustrate the usefulness of network GARCH models.

Key words and phrases: GARCH model, multivariate GARCH Model, network

structure, quasi-maximum likelihood estimator.

1. Introduction

Financial time series data are becoming increasingly available. A partic-

ular focus when using such data is modeling the conditional variance, which

can be achieved using a number of statistical models, among which the ARCH

model (Engle (1982)) and the GARCH model (Bollerslev (1986)) are popular.

These models have proved to be important and powerful tools (Tsay (2003);

Fan and Yao (2017)), and have been extended in numerous ways, including, but

not limited to, the EGARCH, fGARCH, GARCH-M, GJR-GARCH, IGARCH,

NGARCH, QGARCH, TGARCH, and ARFIMA-GARCH models. For related

works on GARCH models, see Lee and Hansen (1994), Lumsdaine (1996), Hall

and Yao (2003),Polonik and Yao (2008), Zhu and Ling (2011) and Conrad and

Mammen (2016), among others.

The aforementioned GARCH models apply mainly to univariate time series

data. However, portfolio optimization and risk management in a real capital

market often require cross-sections of hundreds of different stocks. This led to
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the development of multivariate GARCH (MGARCH) models (Bollerslev and

Wooldridge (1988); Bollerslev (1990); Engle and Kroner (1995); Tse and Tsui

(2002)), which can be used to study the dynamic relations between several stocks

simultaneously. On the one hand, an MGARCH model considers one particular

stock’s historical returns and its conditional variance. On the other hand, it

takes into account information on other stocks (e.g., the correlation or covari-

ance). Conceptually, it is easy to extend a univariate GARCH model to the

multivariate case. However, statistical inferences for MGARCH models are quite

challenging, because the parameters of interest are all included in the inverse

conditional covariance matrix during the estimation procedure. In particular,

the number of parameters increases rapidly with the number of stocks, making

the resulting estimates highly unstable. Furthermore, the positive definiteness of

the conditional covariance matrix has to be ensured. To make the model more

applicable in practice, additional structures need to be imposed on the covariance

matrix.

The main challenge in MGARCH modeling is to impose a realistic, but par-

simonious specification to make the covariance matrix positive definite. Popular

methods of doing so include imposing certain structures on the conditional covari-

ance matrix (Bollerslev (1990); Engle and Kroner (1995); Tse and Tsui (2002))

or applying dimension-reduction techniques (Pan, Polonik and Yao (2010); Lam

and Yao (2012); Li et al. (2016)). Popular models in the former group include the

CCC-GARCH models (Bollerslev (1990); Tse (2000)) and DCC-GARCH models

(Tse and Tsui (2002)). In the latter group, factor modeling has been used ex-

tensively by introducing both observed factors (Engle, Ng and Rotschild (1990);

Bollerslev and Engle (1993); Tao et al. (2012)) and unobserved factors (Pan,

Polonik and Yao (2010); Hu and Tsay (2013); Li et al. (2016)). In this study,

we develop a new method for an MGARCH model, based on network structure

data. We call the proposed model the network GARCH model.

Network analyses have been incorporated successfully in many fields, includ-

ing sociology, marketing, and organization behavior, among others. Empirical

findings show that model performance can be improved significantly by incor-

porating network structure information (Goel and Goldstein (2014); Nitzan and

Libai (2011); Wei et al. (2014)). In a real stock market, investors can select differ-

ent stocks to diversify their investment risk. However, stocks in which investors

have a particularly large holding always indicate unique information (Livingston

(2010); Pareek (2012); Chou and Lee (2012); Bajo, Crociand Marinelli (2017)).

Often, if two stocks have a common shareholder, their financial performance (i.e.,
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stock returns) is highly correlated. Therefore, common stock shareholdings can

be used to construct an information network. Furthermore, the network struc-

ture will be reflected in the conditional covariance matrix. This will lead to a

highly parsimonious model and a parameter dimension reduction.

The proposed model is distinct from existing models in the following ways.

First, in contrast to the traditional GARCH model, the network GARCH model

uses information on other stocks by defining an appropriate network structure.

Second, the network GARCH model can process large numbers of stocks in

terms of volatility forecasting. Third, the number of unknown parameters in

the network GARCH model is substantially lower, owing to the network struc-

ture. Fourth, the computational complexity drops from O(N2) to O(N). Fifth,

the strictly stationary solution for the new model can be established rigorously

under certain conditions. Lastly, in order to estimate network GARCH model,

we propose a quasi-maximum likelihood estimator (QMLE) and investigate its

asymptotics.

The rest of the article is organized as follows. Section 2 presents the network

GARCH model, including its strict stationarity solution and asymptotic prop-

erties. Section 3 shows the finite-sample performance of the network GARCH

model using extensive numerical studies of both simulated and real data sets.

Section 4 concludes the paper. All proofs are relegated to the online Supplemen-

tary Material.

2. The Network GARCH Model

2.1. Model setup

Let i be the stock index in the stock market, where 1 ≤ i ≤ N . Here, N

denotes the number of stocks, and is fixed in our model. For stock i, we assume a

continuous response variable yit ∈ R1 is observed for t = 1, . . . , T . For example,

yit may denote the return on stock i at time t in the stock market. Following

Engle (1982) and Bollerslev (1986), a classical GARCH(1,1) model is defined as

yit = εit
√
hit, hit = ω0 + α0y

2
i,t−1 + β0hi,t−1, (2.1)

where {εit} is a sequence of independent and identically distributed (i.i.d.) ran-

dom variables, with E(εit) = 0 and var(εit) = 1. In addition, ω0 > 0, α0 ≥ 0,

and β0 ≥ 0 are unknown parameters, and are interpreted as volatility parame-

ters. Lastly, hit is the conditional variance. Bollerslev (1986) showed that model

(2.1) defines a second-order stationary solution if and only if α0 +β0 < 1. Later,
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Nelson (1990) proved that there exists a unique strictly stationary solution to

model (2.1) if and only if E log(β0 + α0ε
2
it) < 0.

To take the network structure into consideration, we first define an adjacency

matrix A = (aij) ∈ RN×N , where aij = 1 if stock i is connected to stock j, and

aij = 0 otherwise. Let aii = 0 for 1 ≤ i ≤ N . In our empirical example, we

assume that two stocks are connected (i.e., aij = aji = 1) if they share at least

one common shareholder among their respective top 10 shareholders. In order to

model this network dependence structure, we incorporate a new term in model

(2.1). This yields the network GARCH model

yit = εit
√
hit, hit = ω0 + α0y

2
i,t−1 + λ0 d

−1
i

∑
j 6=i

aijy
2
j,t−1 + β0hi,t−1, (2.2)

where
∑

j 6=i represents
∑N

j=1,j 6=i , and di =
∑N

j=1 aij is the total number of stocks

to which i connects, which is the out-degree. The coefficient associated with the

out-degree is λ0. If di = 0 for some i, stock i does not have an out-degree, and

is regarded as isolated. In this case, we define d−1
i

∑
j 6=i aijy

2
j,t−1 = 0, following

convention. This idea is similar to, but not the same as that in the network

VAR model (Zhu et al. (2017)). Although the latter model includes network

structure information in its specification, the network VAR fits the conditional

mean, whereas the proposed model fits the conditional variance. In contrast to

the traditional MGARCH model, we implicitly assume that stock i is affected

only by its direct connected neighbors (i.e., aij = 1). This is typically true in

practice, because the activities of j with aij = 0 cannot be observed by i. Thus,

λ0 captures the average influence of other stocks on stock i, which we interpret

as the network effect. The assumption that a stock experiences only an average

effect of all its connected neighbors may have some limitations, thus limiting the

applicability of the proposed network GARCH model. For example, the model

is particularly suitable when the stocks belong to the same industry. In the next

subsection, we derive a strict stationarity solution for model (2.2).

2.2. Strict stationarity

Here, we derive a stationary solution for model (2.2). For simplicity, we

define yt = (y1t, . . . , yNt)
′, ht = (h1t, . . . , hNt)

′, D = diag(d1, . . . , dN ), Et =

diag(ε2
1t, . . . , ε

2
Nt), and Bt = β0IN + α0Et + λ0D

−1AEt, where IN denotes an

N ×N identity matrix. Then, model (2.2) can be rewritten in vector form as

ht = ω01N + Bt−1ht−1, (2.3)
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where 1N = (1, . . . , 1)′ is a vector with a compatible dimension. The top Lya-

punov exponent associated with ht in (2.3) is defined as

γ0 = inf

{
1

n
E log ‖BnBn−1 · · ·B1‖∗, n ∈ N

}
,

where N is the set of natural numbers and ‖ · ‖∗ defines the operator norm of

N × N matrices. By Theorem 3.2 in Bougerol and Picard (1992), ht converges

almost surely (a.s.), and the process (yit) in model (2.2) has a unique strictly

stationary solution if and only if γ0 < 0. Under this condition, we have the

following expression:

ht = ω01N + ω0

∞∑
j=1

{
j∏
i=1

Bt−i

}
1N . (2.4)

However, γ0 is closely related to the distribution of εit. Although it can be

simulated using the Monte Carlo method, it is not easy to calculate in practice.

In what follows, we give a sufficient condition to ensure γ0 < 0; see Theorem 1

and the proof in Appendix A.

Theorem 1. If α0 +λ0 +β0 < 1, there exists a unique strictly stationary solution

with finite second moments for model (2.2); that is, E‖yt‖2 < ∞, where ‖ · ‖
is the Euclidean norm. In particular, under Assumption 1 below, the long-run

variance-covariance matrix of yt is

Σy = diag(ω0[(1− α0 − β0)IN − λ0D
−1A]−11N ).

Remark 1. Theorem 1 is constructed with a fixed N , which will break if N

is diverging because the dimension of yt is increasing. In this case, it seems a

meaningful concept of stationarity is highly questionable. As a result, if N is

diverging, Theorem 1 not only breaks, but is also not fixable. However, as shown

in the following real-data analysis, our model can cope with a dimension much

higher than those of conventional models.

2.3. Quasi-maximum likelihood estimator

Assume that observations (y1, . . . ,yT ) are from model (2.2) with true value

θ0 = (ω0, α0, λ0, β0)′ ∈ R4. Here, T is the sample size. Let θ = (ω, α, λ, β)′ ∈ R4

be the parameter. The quasi-log-likelihood function (ignoring a constant) is given

by
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L̃(θ) =
1

T

T∑
t=1

˜̀
t(θ), ˜̀

t(θ) =
1

N

N∑
i=1

{
log σ̃2

it(θ) +
y2
it

σ̃2
it(θ)

}
,

where σ̃2
it(θ) is defined recursively for t ≥ 1 by

σ̃2
it(θ) = ω + αy2

i,t−1 + λ d−1
i

∑
j 6=i

aijy
2
j,t−1 + βσ̃2

i,t−1(θ),

with σ̃2
i0(θ) ≡ 0.

The QMLE is defined as

θ̂ = (ω̂, α̂, λ̂, β̂)′ = arg min
θ∈Θ

L̃(θ), (2.5)

where Θ is the parameter space.

To discuss the asymptotic properties of θ̂, it is convenient to approximate the

sequence {σ̃2
it(θ)} by an ergodic stationary sequence {σ2

it(θ)}, which is defined as

σ2
it(θ) = ω + αy2

i,t−1 + λ d−1
i

∑
j 6=i

aijy
2
j,t−1 + βσ2

i,t−1(θ), (2.6)

for any t and each i. In addition, σ2
it(θ0) = hit. Similarly to the definitions of

L̃(θ) and ˜̀
t(θ), we can define

L(θ) =
1

T

T∑
t=1

`t(θ), `t(θ) =
1

N

N∑
i=1

{
log σ2

it(θ) +
y2
it

σ2
it(θ)

}
. (2.7)

Before stating our main results, we give two assumptions that are standard

in studies of GARCH-type models.

Assumption 1. {εit} is i.i.d. across i and t with zero mean and unit variance.

Furthermore, assume ε2
it is nondegenerate.

Assumption 2. The parameter space Θ is a compact subset of {θ : ω > 0, α >

0, λ > 0, β > 0, α+ λ+ β < 1} and θ0 ∈ Θ.

The following theorem states the strong consistency and asymptotic normal-

ity of the QMLE θ̂.

Theorem 2. If Assumptions 1–2 hold, then θ̂
a.s.−−→ θ0 as T →∞. Furthermore,

if κ4 = Eε4
it <∞ and θ0 is an interior point of Θ, then as T →∞,
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√
NT

(
θ̂ − θ0

)
→d N (0, (κ4 − 1)Σ−1),

where

Σ =
1

N

N∑
i=1

E

(
1

h2
it

∂σ2
it(θ0)

∂θ

∂σ2
it(θ0)

∂θ′

)
,

∂σ2
it(θ0)

∂θ
=

1, y2
i,t−1, d

−1
i

∑
j 6=i

aijy
2
j,t−1, σ

2
i,t−1

′ + β0

∂σ2
i,t−1(θ0)

∂θ
.

The adjacency matrix is used to calculate the parameter derivative. Given

an initial guess of θ0, we repeat the above process until we obtain a convergent

θ. To make a statistical inference for θ0, we need to estimate κ4 and Σ. In

practice, κ4 can be consistently estimated as κ̂4 = (NT )−1
∑N

i=1

∑T
t=1 ε̂

4
it, where

ε̂it = (ĥit)
−1/2yit. A consistent estimator of Σ is its sample counterpart:

Σ̂ =
1

NT

N∑
i=1

T∑
t=1

( 1

σ̃4
it(θ̂)

∂σ̃2
it(θ̂)

∂θ

∂σ̃2
it(θ̂)

∂θ′

)
.

Remark 2. MGARCH models have been well studied. Therefore, our work

provides little contribution to the parameter consistency theory of a “general”

MGARCH model. Instead, we propose a special form of MGARCH model that

takes into account an observed network structure. As a result, the number of

unknown parameters is substantially reduced, enabling us to cope with a dimen-

sion much higher than those of conventional models. However, the drawback of

our model is that it cannot be used to fit a general multivariate time series if no

meaningful network structure is defined.

3. Numerical Studies

3.1. Simulated data

To demonstrate the finite-sample performance of the proposed model, we

present three simulation examples. These three examples are similar, but vary

in terms of the mechanism used to generate the network structure A. Once A is

simulated, it is fixed throughout the remaining simulation studies. For a given

network structure A, the response variable yit is generated according to model

(2.2). Then, for a given sample size T , we first simulate a time series sequence
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Figure 1. Left panel: in-degree distribution for Example 1 with N = 50. Right panel:
network visualization. A dot denotes a node and a line represents an edge. A deeper
color and a larger dot indicate a larger in-degree.

of yit of length T0 + T . The first T0 observations are dropped to eliminate the

effect of the initial values. In the simulation study, we set T0 = 5, 000 for all

three experiments. Finally, a sequence of {yit} is simulated.

Example 1. (Random Distributed Network Structure) We present a simple net-

work structure with an in-degree (i.e., qi =
∑N

j=1 aji) that follows a random

distribution. This means there are no influential nodes (i.e., with a relatively

large in-degree) in the network. We first generate N i.i.d. random variables

from a uniform distribution between 0 and 5. Denote these variables by Ui, with

1 ≤ i ≤ N . For each node i, we randomly select a sample size of [Ui] from

SF = {1, 2, . . . , N}, without replacement, where [Ui] denotes the smallest integer

not less than Ui. Denote the sample by Si. Define aij = 1 if j ∈ Si, and aij = 0

otherwise. This leads to the adjacency matrix A. A histogram of the in-degree

and a visualization of this network structure are shown Figure 1. From this fig-

ure, we can see that the distribution of the in-degree is almost random, and that

there are no influential nodes.

Example 2. (Power-Law Distributed Network Structure) We next consider the

power-law distributed network structure (Clauset, Shalizi and Newman (2009)).

This network structure reflects a general phenomenon in which the majority of

nodes have very few connections, while a small number have many connections.
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Figure 2. Left panel: in-degree distribution for Example 2 with N = 50. Right panel:
network visualization. A dot denotes a node and a line represents an edge. A deeper
color and a larger dot indicate a larger in-degree.

In such networks, there always exist some influential nodes with a very large

in-degree (e.g., celebrities). To mimic this network structure, we follow Clauset,

Shalizi and Newman (2009), generating A as follows. First, we simulate each

node’s out-degree in the same way as in Example 1. Next, we generate a further

N i.i.d. random variables (e.g., denoted as ri, for i = 1, . . . , N) according to

the discrete power-law distribution; that is, P (ri) = ck−α for a normalizing

constant c and exponent parameter s = 2.5. A smaller value of s implies a heavier

distribution tail. We then normalize each ri to its corresponding probability,

pi = ri/
∑N

i=1 ri. For each node i, we select a sample size of [Ui] according to

the probability of pi from SF = {1, 2, . . . , N}, without replacement. Denote the

sample by Si. Define aij = 1 if j ∈ Si, and aij = 0 otherwise. A histogram of the

in-degree and a visualization of this network structure are shown Figure 2. We

can see that there is at least one node with a very large degree, which indicates

that it could be an influential node.

Example 3. (Stochastic Block Network Structure) The stochastic block model

(Nowicki and Snijders (2011)) is another popular network topology in the litera-

ture. For example, in a stock market, stocks may belong to different industries.

The performance of a stock is very likely to be influenced by its neighbors in

the same industry block. Following Nowicki and Snijders (2011), let K = N/10
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Figure 3. Left panel: in-degree distribution for Example 3 with N = 50. Right panel:
network visualization with K = 5. A dot denotes a node and a line represents an edge.

be the total number of blocks in this case. For simplicity, we randomly assign

a block label (k = 1, 2, . . . ,K) to each node, with equal probability. Next, set

P (aij = 1) = 0.5 if i and j belong to the same block, and P (aij = 1) = 0.001/N

otherwise. This means nodes in the same block are more likely to be connected

to each other than are nodes from different blocks. A histogram of the in-degree

and a visualization of this network structure are shown Figure 3. From Figure

3, we can clearly see there are five blocks in this simulated network structure..

3.2. Simulation results

For each example, various combinations of network size (i.e., N = 50, 100, 200)

and sample size (i.e., T = 100, 200, 400) are investigated. To make the simula-

tion results more stable, we consider different setups of the true parameters

θ0 = (ω0, α0, λ0, β0)′. In the first example, θ0 is fixed as (0.005, 0.1, 0.1, 0.7)′. In

the second example, θ0 is fixed as (0.01, 0.1, 0.2, 0.6)′. Lastly, in the block case, θ0

is fixed as (0.02, 0.1, 0.3, 0.5)′. Each simulation is randomly replicated M = 1, 000

times. Let θ̂(m) = (θ̂
(m)
k )′ = (ω̂

(m)
0 , α̂

(m)
0 , λ̂

(m)
0 , β̂

(m)
0 )′ be the estimators obtained

in the mth (1 ≤ m ≤M) replication. We consider two measures to evaluate the

finite-sample performance of the proposed method. First, for a given parame-

ter θk, with 1 ≤ k ≤ 4, the root-mean-square error is evaluated by RMSEk =

{M−1
∑M

m=1(θ̂
(m)
k − θk)

2}1/2. Second, for each 1 ≤ k ≤ 4, a 95% confidence



NETWORK GARCH MODEL 1733

Table 1. Simulation results for Example 1 with 1,000 replications. The RMSE val-
ues (×10−2) are reported for each estimate. The corresponding CP (in %) is given in
parentheses. Network density (ND) is also reported.

T ω0 α0 λ0 β0 ND(%)

N = 50

100 0.14 (94.9) 1.43 (94.9) 1.66 (95.1) 4.23 (93.7)

200 0.08 (95.7) 0.99 (94.9) 1.12 (94.7) 2.79 (94.8) 6.41

400 0.06 (95.2) 0.70 (95.3) 0.79 (94.8) 1.87 (95.2)

N = 100

100 0.11 (95.0) 1.00 (95.4) 1.18 (94.5) 3.02 (94.6)

200 0.07 (95.0) 0.71 (94.6) 0.78 (96.5) 2.04 (94.1) 3.20

400 0.05 (95.2) 0.49 (95.5) 0.58 (94.2) 1.38 (94.7)

N = 200

100 0.08 (94.0) 0.72 (94.2) 0.81 (94.6) 2.25 (92.0)

200 0.05 (93.0) 0.52 (94.4) 0.55 (95.3) 1.47 (94.2) 1.52

400 0.03 (95.0) 0.36 (93.9) 0.40 (94.6) 1.00 (93.3)

Table 2. Simulation results for Example 2 with 1,000 replications. The RMSE val-
ues (×10−2) are reported for each estimate. The corresponding CP (in %) is given in
parentheses. Network density (ND) is also reported.

T ω0 α0 λ0 β0 ND(%)

N = 50

100 0.47 (91.7) 1.56 (94.3) 2.00 (92.2) 3.93 (88.7)

200 0.16 (93.5) 1.04 (93.6) 1.27 (93.6) 2.35 (91.9) 5.51

400 0.11 (93.5) 0.73 (94.3) 0.85 (94.0) 1.61 (92.0)

N = 100

100 0.20 (94.5) 1.04 (95.4) 1.44 (94.3) 2.82 (93.9)

200 0.13 (94.0) 0.74 (93.8) 0.95 (95.9) 1.97 (93.1) 3.09

400 0.09 (95.0) 0.50 (95.4) 0.70 (95.5) 1.33 (93.6)

N = 200

100 0.14 (93.3) 0.73 (94.8) 1.01 (94.4) 2.13 (93.5)

200 0.09 (93.6) 0.54 (94.6) 0.72 (94.0) 1.40 (93.5) 1.50

400 0.06 (95.3) 0.37 (94.7) 0.50 (94.7) 0.95 (94.6)

interval is constructed for θk as CI
(m)
k = (θ̂

(m)
k − z0.975ŜE

(m)

k , θ̂
(m)
k + z0.975ŜE

(m)

k ),

where ŜE
(m)

k is the square root of the jth diagonal element of Σ̂T , and zα is the

αth quantile of a standard normal distribution. Then, the coverage probability is

computed as CPk = M−1
∑M

m=1 I(θk ∈ CI
(m)
k ), where I(·) is the indicator func-

tion. Lastly, the network density (i.e., {N(N − 1)}−1
∑

i,j aij) is also reported.

The simulation results are summarized in Tables 1–3.

For the first example in Table 1, the estimators are consistent, with RMSE
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Table 3. Simulation results for Example 3 with 1,000 replications. The RMSE val-
ues (×10−2) are reported for each estimate. The corresponding CP (in %) is given in
parentheses. Network density (ND) is also reported.

T ω0 α0 λ0 β0 ND(%)

N = 50

100 0.45 (95.4) 1.61 (95.1) 3.50 (95.1) 5.42 (94.4)

200 0.29 (95.3) 1.13 (94.5) 2.37 (95.6) 3.64 (94.4) 9.43

400 0.21 (95.4) 0.79 (95.5) 1.75 (95.4) 2.61 (94.4)

N = 100

100 0.30 (95.9) 1.15 (94.8) 2.53 (93.8) 3.79 (94.2)

200 0.20 (95.3) 0.79 (95.2) 1.73 (95.1) 2.57 (94.7) 4.65

400 0.14 (95.4) 0.55 (95.2) 1.20 (94.6) 1.71 (95.8)

N = 200

100 0.20 (94.3) 0.79 (95.6) 1.79 (93.8) 2.75 (93.3)

200 0.14 (94.2) 0.58 (95.4) 1.22 (95.7) 1.86 (94.6) 2.41

400 0.09 (94.7) 0.40 (95.3) 0.87 (94.7) 1.27 (95.4)

values that decrease toward zero as T → ∞. For example, consider λ0 (i.e.,

the estimated network effect) with N = 100. The RMSE value drops from

1.18% to 0.58% as T increases from 100 to 400. Furthermore, the reported

coverage probabilities (i.e., CP) for each parameter (θk) are all fairly close to the

nominal level of 95%. This suggests that the estimated standard error (i.e., ŜE)

approximates the true SE well. Quantitatively similar results are obtained for

Example 2 (see Table 2) and Example 3 (see Table 3). Together, these findings

confirm that the proposed estimator θ̂ is consistent and asymptotically normal.

3.3. Real-data analysis

In this subsection, we use the proposed model to analyze real stock market

data sets. The stock data are taken from the Chinese A share market traded

on the Shanghai Stock Exchange and the Shenzhen Stock Exchange in 2014.

Specifically, the response variable yit is the log of the daily return. According to

the industry classification criteria provided by the China Securities Regulatory

Commission, each stock is placed into one of 18 categories. We use the following

four categories to assess the performance of the proposed model: the Mining

Industry with 68 stocks, Real Estate with 127 stocks, Wholesale and Retail with

139 stocks, and Manufacturing with 1,515 stocks. For each category, the net-

work structure is constructed based on common shared ownership information.

Specifically, we try three different choices of adjacency matrix to compare the es-

timation results. First, we collect information on the top 10 shareholders for each
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Table 4. Estimate results for the stock data set.

Case 1 Case 2 Case 3

Category Parameter Estimate p-value Estimate p-value Estimate p-value

Mining Industry

ω0 0.0001 <0.001 0.0001 <0.001 0.0001 <0.001

α0 0.1933 <0.001 0.1992 <0.001 0.1978 <0.001

λ0 0.0571 0.0015 0.0712 0.0047 0.0451 0.0264

β0 0.5614 <0.001 0.5578 <0.001 0.5628 <0.001

Real Estate

ω0 0.0001 <0.001 0.0001 <0.001 0.0001 <0.001

α0 0.1869 <0.001 0.1868 <0.001 0.1873 <0.001

λ0 0.0311 0.0070 0.0468 0.0265 0.0274 0.0527

β0 0.6605 <0.001 0.6756 <0.001 0.6772 <0.001

Wholesale and Retail

ω0 0.0001 <0.001 0.0001 <0.001 0.0001 <0.001

α0 0.1855 <0.001 0.1907 <0.001 0.1897 <0.001

λ0 0.0447 0.0001 0.0199 0.3281 0.0264 0.0399

β0 0.6867 <0.001 0.6937 <0.001 0.6889 <0.001

Manufacturing

ω0 0.5×10−4 0.0091 0.0001 <0.001 0.0001 <0.001

α0 0.1417 <0.001 0.1595 <0.001 0.1499 <0.001

λ0 0.0916 0.0027 0.0196 0.2982 0.0587 0.0109

β0 0.7101 <0.001 0.6982 <0.001 0.7104 <0.001

stock. The network structure (i.e., adjacency matrix) is constructed as follows.

For any two arbitrary stocks i and j, aij = 1 if they share at least one common

shareholder, otherwise aij = 0. The second matrix is similar to the first except

that for stocks i and j, aij = 1 if they share at least two common sharehold-

ers, otherwise aij = 0. Lastly, we collect information on the top 5 shareholders

for each stock. For stocks i and j, aij = 1 if they share at least one common

shareholder, otherwise aij = 0.

To provide a descriptive analysis for these four categories, we plot the daily

averaged stock return for each industry in Figure 4. We also display their network

structure in Figure 5. Clearly, the network structures of the four industries differ

from each other. Then, we apply the network GARCH model to each data set.

The estimation results are given in Table 4.

Table 4 shows that the results are consistent across different choices of ad-

jacency matrix. Nearly all estimates are statistically significant at the 1% or

5% levels, except for the second case for manufacturing and retail. This is un-

derstandable, because the network in this case is too sparse. This leads to a

nonsignificant effect of the network structure. For example, the estimated net-
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Figure 4. Average stock return for the four categories in 2014.

work effect λ0 (0.0571) for the mining industry suggests that the return of a

stock is positively related to the performance of its connected neighbors. The

estimated α0 (0.1933) confirms that a stock with a higher (lower) return in the

past is likely to exhibit a higher (lower) performance in the future. Finally, the

estimated β0 (0.5614) is very strong compared with the other two effects, indi-

cating that the variance of a stock could be very large in practice. Similar results

are found in the other three categories.
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(a) Mining Industry (b) Real Estate

(c) Wholesale and Retail (d) Manufacturing

Figure 5. Network structure for the four categories.

4. Conclusion

We propose a network GARCH model that takes network structure infor-

mation into consideration. To capture the impact of connected neighbors, we

introduce a network structure term to the traditional GARCH (1,1) model.

The proposed model decreases the computational complexity substantially from

O(N2) to O(N). The resulting estimators enjoy asymptotic properties, and these

findings are confirmed by extensive numerical studies. We further illustrate our

model using a real data set from the Chinese stock market. A significant network
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structure term is detected.

To conclude this article, we present a number of interesting topics for fu-

ture study. First, the network structure term in model (2.2) is added on y2
j,t−1.

However, the adjacency matrix can also be added on hj,t−1. This makes the

resulting model considerably more complicated, and the associated theoretical

development more challenging. Nevertheless, linking hj,t−1 would be a worth-

while research topic. Second, the parameter θ is assumed to be the same across

stocks. However, in reality, stock heterogeneity may mean that stocks have dif-

ferent reactions to an effect. Thus, investigating a varying-coefficient network

GARCH model is another interesting problem worth pursuing. Lastly, the net-

work structure discussed in this paper is simple and straightforward. The network

term is driven by one parameter, λ. This may limit our model in some contexts.

However, our empirical results show that, for instance, the model performs well

when the stocks are from the same category. In future research, we will consider

network structures that are more flexible, such as a sub-block structure.

Supplementary Material

All technical details can be found in the online Supplementary Material.
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