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A note on factor normalization 
for deep neural network models
Haobo Qi1, Jing Zhou2* & Hansheng Wang1

Deep neural network (DNN) models often involve high-dimensional features. In most cases, these 
high-dimensional features can be decomposed into two parts: a low-dimensional factor and residual 
features with much-reduced variability and inter-feature correlation. This decomposition has several 
interesting theoretical implications for DNN training. Based on these implications, we develop a 
novel factor normalization method for better performance. The proposed method leads to a new deep 
learning model with two important characteristics. First, it allows factor-related feature extraction, 
and second, it allows for adaptive learning rates for factors and residuals. These model features 
improve the convergence speed on both training and testing datasets. Multiple empirical experiments 
are presented to demonstrate the model’s superior performance.

In recent decades, the progress in deep learning, together with advances in graphics processing unit (GPU) 
devices, has led to the growing popularity of deep neural network (DNN) models in both academia and industry. 
DNN models have been widely used in various fields for applications such as image classification, speech recogni-
tion, and machine translation. However, because of their deep structure, most DNN models are extremely difficult 
to train. Practical training of a DNN model is often extremely time consuming and highly depends on empirical 
experience. Therefore, a series of effective optimization methods have been developed for faster DNN training.

According to a recent survey  paper1, most optimization methods with explicit derivatives can be roughly 
categorized into two groups: first-order optimization methods and high-order optimization methods. The widely 
used stochastic gradient descent (SGD) algorithm and its  variants2,3 are typical examples of first-order optimiza-
tion methods. The SGD algorithm computes only the first-order derivatives (i.e., gradient) using a randomly 
sampled batch. Thus, the SGD algorithm can handle large datasets with limited computational resources. Unfor-
tunately, the practical feasibility of SGD comes at the cost of sublinear convergence  speed4. For better convergence 
speed, various accelerated SGD algorithms have been developed, for instance, the popularly used momentum 
 method5,6 and the Nesterov accelerated gradient descent (NAG)7,8 method. Both methods take into consid-
eration information from the previous update gradient direction. Further improvements including  AdaGrad9, 
 AdaDelta10,  RMSprop11 and  Adam12 consider element-wise learning rate adjustment, which are known as the 
adaptive learning rate methods. For a more stable gradient estimation, the stochastic average gradient (SAG)13 
and stochastic variance reduction gradient (SVRG)4 methods have also been developed.

In addition to the first-order optimization methods, high-order optimization methods also exist. Popular 
examples include Newton’s method and its  variants14,15. Compared to the first-order methods, high-order meth-
ods tend to have faster convergence speed because they consider Hessian matrix information. For example, New-
ton’s method can achieve a quadratic convergence speed under appropriate  conditions16. However, calculating 
and storing the Hessian matrix and its inverse are extremely expensive in terms of both time and storage. This has 
led to the development of approximation methods, such as the quasi-Newton  method16 and the stochastic quasi-
Newton  method17. The idea behind these methods is to approximate the inverse Hessian matrix using a positive 
definite matrix. Popular examples include the Davidon-Fletcher-Powell18, Broyden-Fletcher-Goldfarb-Shanno 
(BFGS)19,20, and limited-memory  BFGS21 methods. Moreover, as a useful technique for achieving fast conver-
gence, various preconditioning techniques are also commonly  used22. The basic idea of preconditioning is to 
transform a difficult or ill-conditioned linear system (e.g., Aθ = b ) into an easier system with better  conditions23. 
Consequently, the information contained in the feature covariance can be effectively  used24. Other interesting 
methods for extracting useful information from the feature covariance also exist; see, for example,25,26,  and27.

However, to the best of our knowledge, no existing models or methods are specifically designed for high-
dimensional features with a factor structure. In the meanwhile, ample empirical experience suggests that high-
dimensional features usually demonstrate a strong factor-type covariance  structure28–30. In other words, a signifi-
cant amount of feature variability can be explained by a latent factor with very low dimensions. Consequently, 
the original features can be decomposed into two parts: a low-dimensional factor that accounts for a significant 
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portion of the total volatility, and a residual part with the factor effects removed. This residual part has the 
same dimensions as the original feature. Consequently, the variability is significantly reduced. Moreover, the 
inter-feature correlation is also substantially reduced. To this end, the original learning problem concerning the 
high-dimensional features can be decomposed into two learning subproblems. The first is related to latent fac-
tors. This is relatively simple because the factor dimensions are very low. The second problem is related to the 
residual feature. Unfortunately, this remains a challenging problem because of the feature’s high dimensions. 
However, compared with the original problem, this modified problem is much easier to solve because the inter-
feature dependence is substantially reduced. For practical implementation, we propose here a novel method 
called factor normalization. It begins with a benchmark model (e.g., AlexNet or ResNet50) and then slightly 
modifies it to create a new model structure. Unlike the benchmark model, the new model takes the latent factor 
and residuals as different inputs. The original structure is retained to process the residuals, and the latent factor 
is then returned to the modified model in the last layer. This compensates for the information loss caused by 
factor extraction. Thus, the new model allows factor-and residual-related features to be processed separately. 
Furthermore, different (i.e., adaptive) learning rates can be allowed for the factor and residuals. This leads to 
adaptive learning and thus a fast convergence speed.

The remainder of this article is organized as follows. Section “theoretical motivation” develops our theoretical 
motivation and provides statistical insights. Section “proposed method” details the proposed model. Section 
“experiments” demonstrates the outstanding performance of the proposed model through extensive empirical 
experiments, and Section “conclusion” concludes the article with a brief discussion of future research. All detailed 
techniques are relegated to the “Appendix”.

Theoretical motivation
We developed our new model based on several interesting theoretical motivations derived from different per-
spectives. Because the SGD algorithm is a stochastic version of the gradient descent (GD) algorithm, we focus 
on the standard GD algorithm in this section for simplicity.

GD algorithm. Let (Xi ,Yi) be the observation collected from the ith instance with 1 ≤ i ≤ N , where Yi is 
often the class label and Xi = (Xi1, . . . ,Xip)

⊤ ∈ R
p is an associated p-dimensional feature. The loss function, 

evaluated at i, is defined as ℓ(Yi ,X
⊤
i θ) , where θ ∈ R

p is an unknown parameter. The global loss is then given 
by LN (θ) = N−1

∑N
i=1 ℓ(Yi ,X

⊤
i θ) . The global gradient is given by L̇N (θ) = N−1

∑N
i=1 ℓ̇(Yi ,X

⊤
i θ)Xi and 

ℓ̇(y, z) = ∂ℓ(y, z)/∂z . Let θ̂ (t) be the estimator obtained at the tth iteration. Subsequently, the GD algorithm 
updates the parameter as θ̂ (t+1) = θ̂ (t) − αL̇N (θ̂

(t)) . Here, α is a scalar referred to as the learning  rate2. Assume 
that LN (θ̂

(t)) reaches its minimum at θ̂ , such that L̇N (θ̂ ) = 0 . Subsequently, we apply the Taylor expansion for 
L̇N (θ) at θ̂ . This leads to

where K = Ip − αL̈N (θ̂ ) . We refer to K as a contraction operator, which plays a very important role in opti-
mization. Intuitively, all the eigenvalues of K should lie within (−1, 1) . Otherwise, the algorithm might not 
numerically converge.

Proposition 1 Assume L̈N (θ̂ ) is a positive definite matrix. Let �1 ≥ �2 ≥ · · · ≥ �p > 0 be the eigenvalues of 
L̈N (θ̂ ) . To converge the GD algorithm, we must have 0 < α < 1/�1.

Condition number. From Proposition 1, we know that the learning rate cannot be too large. Otherwise, 
the GD algorithm may not numerically converge. The size of the learning rate is controlled by the largest eigen-
value of the Hessian matrix, L̈N (θ̂ ) . The larger the value of �1 , the smaller the learning rate and the slower the 
convergence speed. This problem is particularly serious if the condition number (i.e., �1/�p ) of the Hessian 
matrix is very large. In this case, a large �1 value forces the learning rate, α , to be very small. Meanwhile, other 
small eigenvalues ( �j for j  = 1 ) reduce the convergence speed along the corresponding eigendirections. Thus, 
practitioners should want the condition number of the Hessian matrix to be as small as possible. However, as 
mentioned previously, most high-dimensional features have a strong factor structure. In other words, the size 
of the top eigenvalues of covariance matrix � is typically much larger than that of the rest. Consequently, the 
condition number of the covariance matrix is typically very large. Therefore, it is of great interest to investigate 
how this factor structure would affect the condition number of the Hessian matrix.

To address this  important problem, we evaluate the expected Hessian matrix as 
H = E(L̈ (θ)) = E{ℓ̈(Yi ,X

⊤
i θ)XiX

⊤
i } . where ℓ̈(y, z) = ∂ℓ̇(y, z)/∂z denotes the second-order derivative 

of ℓ(y, z) with respect to z. For illustrative purposes: assume that Xi is normally distributed, with a mean of 
zero. Recall that the covariance matrix is � , so define X̃i = �−1/2Xi and θ̃ = �1/2θ . We then rewrite H as 
H = �1/2E{ℓ̈(Yi , X̃

⊤
i θ̃ )X̃iX̃

⊤
i }�

1/2 = �1/2
H̃�1/2 , where H̃ = E{ℓ̈(Yi , X̃

⊤
i θ̃ )X̃iX̃

⊤
i } . Let A be an arbitrary posi-

tive-definite matrix, and define �max (A) and �min (A) as the maximum and minimum eigenvalues of A, respec-
tively. We then have �max (H) ≥ �max (�)�min (H̃) and �min (H) ≤ �min (�)�max (H̃) . This further suggests 
that the condition number of H (i.e., con(H) = �max (H)/�min (H) ) satisfies the following inequality:

θ̂ (t+1) − θ̂ =
{
Ip − αL̈N (θ̂ )

}
(θ̂ (t) − θ̂ )+ o(�θ̂ (t) − θ̂�2)

=K(θ̂ (t) − θ̂ )+ o(�θ̂ (t) − θ̂�2),
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where con(A) stands for the condition number of an arbitrary positive-definite matrix. Note that H̃ is the expected 
Hessian matrix under an extremely ideal situation, where the input feature follows a standard multivariate normal 
distribution. This is arguably the ideal situation for numerical optimization. Thus, we can reasonably expect that 
con(H̃) will not be very large in this case. Moreover, from (1), we know that con(�) should play an important 
role in determining con(H) . That is, the condition number of � is affected by con(H) . This makes numerical 
optimization by a standard GD algorithm extremely difficult and thus calls for a novel solution.

Factor linear subspace. To further explain the motivation behind the proposed method, we 
provide a theoretical justification from a different perspective. Assume a standard factor model as 
Xi = BZi + Ei , where Zi ∈ R

d is a vector with low dimensionality (i.e., d ≪ p ) and B ∈ R
p×d is the cor-

responding factor loading matrix with d ≪ p . Consider the general loss function L (θ) , and recall that 
the global gradient is L̇N (θ) = N−1

∑N
i=1 ℓ̇(Yi ,X

⊤
i θ)Xi . We then have L̇N (θ) = Q1 + Q2 , where 

Q1 = BN−1
∑N

i=1 ℓ̇(Yi ,X
⊤
i θ)Zi ∈ S (B) , Q2 = N−1

∑N
i=1 ℓ̇(Yi ,X

⊤
i θ)εi , and S (B) denotes the linear sub-

space spanned by the column vectors of B. The covariance structure of the global gradient can then be writ-
ten as cov{L̇N (θ)} = cov(Q1)+ cov(Q2), where cov(Q1) = B�zB

⊤/N , �z = cov{L̇ (Yi ,X
⊤
i θ)Zi} ∈ R

d×d , 
cov(Q2) = �ε/N , and �ε = cov{L̇ (Yi ,X

⊤
i θ)εi} ∈ R

d×d . It is then of interest to study the relative sizes of 
cov(Q1) and cov(Q2) under appropriate metrics.

Proposition 2 Assume there exists constant 0 < τmin < τmax < ∞ , such that τmin < �min(�z) ≤ �max(�z) < τmax 
and τmin < �min(�ε) ≤ �max(�ε) < τmax . Furthermore, assume that �min(B

⊤B/p) > τmin . We then have 
tr{cov(Q1)}/tr{cov(Q2)} ≥ τ 2min/τmax.

For most DNN models, the parameter dimension, p, is very high. This makes the model structure sufficiently 
flexible. Accordingly, one might expect the associated GD (or SGD) algorithm should search the entire high- 
dimensional parameter space (e.g., Rp ) in a very flexible way. However, the above proposition indicates that the 
estimated gradient direction is not as flexible as we might expect. In contrast, it always has a significant portion 
(i.e., Q1 ) trapped in a very low-dimensional linear subspace, S (B) . This brings a positive effect. Because the 
linear subspace, S (B) , has a very low dimension (i.e., d), the overfitting effect caused by to Q1 becomes neg-
ligible. However, this positive effect also comes at a convergence cost. By trapping a significant portion of the 
gradient direction in S (B) , the ability of a GD algorithm to explore directions other than S (B) is considerably 
sacrificed. This problem can be solved if the directions of the factor (i.e., Q1 ) and the residual features (i.e., Q2 ) 
can be treated separately. This is another important theoretical insight that drove us to develop our new model.

Proposed method
Inspired by the theoretical findings discussed in the previous section, we propose a factor normalization method. 
This new method is specifically designed for deep models with high-dimensional features and factor structures. 
It begins with an important benchmark model (e.g., AlexNet or ResNet50), and can be implemented in three 
steps: factor decomposition, model reconstruction, and adaptive learning. The details of which are discussed in 
the following subsections.

Factor decomposition. In the first step, we conduct a standard singular value decomposition for the high-
dimensional features. By doing so, a low-dimensional factor can be estimated. Accordingly, the original fea-
tures can be decomposed into two parts. The first is related to the factor and is referred to as the factor part. 
The second comprises the original features, but the factor effects are removed. This part is referred to as the 
residual part (or residual feature). Specifically, during the training process, we assume that the centralized input 
matrix is written as X = (X1 . . . ,XN0)

⊤ ∈ R
N0×p , with n = min(N0, p) , such that the column mean of X is 0. We 

then conduct a singular value decomposition as X = U�V⊤ =
∑n

i=1 �iuiv
⊤
i  , where U = (u1 . . . , un) ∈ R

N0×n 
and V = (v1, vn) ∈ R

p×n , with U⊤U = V⊤V = In and In ∈ R
n×n representing the identity matrix. Moreover, 

� = diag(�1 . . . , �n) is a diagonal matrix, with �1 ≥ �2 ≥ · · · ≥ �n ≥ 0 . We define Vd = (v1 . . . , vd) as a trun-
cated orthogonal matrix that collects the top d singular vectors of V. Then, the latent factors can be estimated as 
Ẑ = XVd , where Ẑ ∈ R

N0×d denotes the estimated factor part. Finally, we use linear regression to estimate the 
residual feature matrix as Ê = X − ẐB̂ , where B̂ = (Ẑ⊤Ẑ)−1Ẑ⊤X ∈ R

d×p denotes the estimated factor-loading 
matrix. Thus, the original feature matrix, X, is decomposed into two parts: the factor part, Ẑ , and the residual 
part, Ê . For the testing process, we first use the column mean calculated from the training data to centralize the 
testing data. We assume that the centralized testing input matrix is written as X̃ = (X̃1 . . . , X̃N1)

⊤ ∈ R
N1×p . 

Then, we use the singular vectors, Vd , and regression coefficients, B̂ , calculated from the training data to decom-
pose the testing data into factor part Z̃ and residual part Ẽ  as Z̃ = X̃Vd and Ẽ = X̃ − Z̃B̂.

Model reconstruction. In the second step, we modify a given benchmark model (e.g., ResNet50) into a 
new model for better performance. More specifically, consider a standard DNN model with (1) an input layer 
with original feature X; (2) an output layer, which often has a dense structure; and (3) sophisticated latent lay-
ers between the input and output layers. We then replace the original feature of the input layer (i.e., X) with the 
residual feature (i.e., Ê ). Next, the residual feature is fully processed by sophisticated latent layers until it reaches 
the output layer. Before the DNN model constructs the last dense layer, we return the estimated latent factor (i.e., 
Ẑ ) to the output layer to compensate for the information loss due to factor extraction.

(1)con(H) ≥ con(�)/con(H̃),
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This leads to a new model structure with two interesting characteristics. The high-dimensional residual 
term is still processed using a sophisticated benchmark model. However, the low-dimensional latent factor is 
not processed in the same manner. This interesting structure is particularly desirable for the following reasons. 
First, in most cases, we find that a one-dimensional factor is already sufficient. In this case, the latent factor is 
univariate. As such, any nonlinear transformation (e.g., from using a DNN) should be only minimally different 
from the original factor in terms of the information contained. Thus, there is little need for further sophisticated 
nonlinear transformation of the univariate latent factor. In contrast, the residual form remains high dimensional. 
However, sophisticated nonlinear transformation is still very useful for high-quality feature extraction. Second, 
to achieve adaptive learning, and thus better performance, we want to use different learning rates for the factor 
and residuals. If the factor is placed in an intermediate layer, the practical implementation of adaptive learn-
ing using TensorFlow programming could be extremely and unnecessarily complicated. This explains why the 
latent factor is set as the input for the last layer. Figure 1 provides a more intuitive visual explanation of the new 
model structure.

Adaptive learning. As previously discussed , with this modified model, the convergence speed remains 
very slow if we adopt a standard SGD algorithm. For a reliable convergence, a smaller learning rate should be 
used for the parameters associated with the factor because the factor variability is large. In contrast, much larger 
learning rates should be used for the parameters associated with the residual features. Otherwise, their limited 
variability could cause the convergence speed to be very slow. This suggests that adaptive (i.e., different) learn-
ing rates should be used for the factor and residuals. Assume that the learning rate used in a standard SGD is 
α . Recall that in Subsection 3.1, we assume that �j is the j-th largest singular value calculated on training input 
matrix X. Then, the factor-associated learning rate is set as αj = α�21/�

2
j  for j = 1 . . . , d . In contrast, the residual-

associated learning rate is set the same as αε = α�21/�
2
d+1 . Consequently, the learning rates used for the latent 

factor become much smaller than those of the residual features. It should be noted that the adaptive learning 
rates used here are different from those used by AdaGrad or  Adam9,12. The AdaGrad and Adam methods adjust 
their learning rates dynamically for each iteration and adaptively for each dimension during the training process.

Experiments
To empirically demonstrate the proposed factor normalization (FN) model, we conducted various experiments 
using different models, including logistic regression, multilayer fully connected neural networks, and deep con-
volutional neural networks. The experiments were run on a Tesla P100 GPU with 16 GB memory.

Logistic regression. We begin with a simple logistic regression (LR) model and evaluate the proposed 
model using the MNIST dataset. This is a classification task with ten classes, 60,000 instances for training, and 
10,000 instances for testing. The input feature is a 28× 28 pixel matrix. To implement the logistic regression, we 
reshape the input feature into a 784-dimensional vector. Subsequently, FN models with various factor dimen-
sions ( d = 1, 2, 10 ) are used to reconstruct the baseline model. The SGD optimizer is used to optimize both the 

Figure 1.  Graphic illustration of model reconstruction for factor normalization. The rectangles represent the 
DNN feature maps. The blue dashed rectangle represents the latent layers between the input and the last dense 
layer. The left panel shows the original DNN structure with the original input feature. The right panel shows the 
modified DNN structure with factor and residual features. As can be seen, the factor and residual features are 
treated separately. The latent factor is reinserted back into the model before the last dense output layer.
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baseline and FN models. Detailed results are presented in Fig. 2. For comparison purposes, all models are trained 
for many epochs so that their performance on the testing data is fully converged. Specifically, a batch size of 200 
with 200 epochs is adopted and we use constant learning rate 0.05 during training process. The left panel of Fig. 2 
shows the training loss for the various models. We find that the FN models consistently outperform their bench-
mark counterparts, because the loss curves in the FN models are always below the baseline model. The right 
panel of Fig. 2 shows the accuracy of the results. We can see that the accuracy curves of the FN models reach 
a plateau earlier than the baseline model. Additionally, there appears to be little difference in the performance 
of the FN models with different factor dimensions d. Therefore, we fix d = 1 for the subsequent experiments.

Multilayer neural networks. Next, we consider a more complicated multilayer neural network model. 
The proposed model has two fully connected hidden layers with 1,000 neurons. Rectified linear unit (ReLU) 
transformation is used in each hidden layer for  activation12. The settings of the experiment are almost the same 
as those in Subsection 4.1, except for the following differences. First, we only consider the FN model in which 
d = 1 . Second, for a comprehensive comparison, we consider four different optimizers: SGD, NAG, AdaGrad, 
and Adam. This results in four groups of comparative experiments. Here, the baseline model is an original 
DNN model with a specific optimization method. It is compared to an FN model, which is reconstructed from 
the same original model using the same optimization setting. Furthermore, we train all models for a total of 50 
epochs. For each optimizer, the initial learning rate is chosen by grid search and decays by 0.2 after 20 epochs. 
The detailed results are presented in Fig. 3.

The top panel of Fig. 3 shows the training loss, in log scale, for the four optimization methods on the baseline 
and FN models. We find that for each optimizer, the FN model always achieves a smaller training loss than the 
baseline model. This difference is more obvious in the cases of SGD, NAG, and AdaGrad. The bottom panel of 
Fig. 3 reports the prediction accuracy of the testing dataset. We find that for each optimizer, the accuracy of the 
FN model is higher than that of the baseline model.

Convolutional neural networks. Convolutional neural networks (CNNs) are the most popular models 
used in image classification and object detection tasks. The main difference between CNNs and multilayer neural 
networks is that CNNs contain many convolutional and pooling layers, which provide efficient feature extrac-
tion and lead to excellent prediction performance. However, CNNs typically have complicated model structures 
with a large number of parameters. Here, we consider two classical CNN models:  AlexNet31 and  ResNet5032. It 
should be noted that the CNN model considered here typically has a a fully connected layer at the end. This is 
because the proposed FN model always adds the factors to the last dense layer. The datasets used in this study are 
 CIFAR1033 and CatDog released by Kaggle in 2013.

Similar to the experiment described in Subsection 4.2, we evaluate four different optimizers:  SGD2,  NAG34, 
 AdaGrad9, and  Adam12. For the AlexNet experiments on the CIFAR10 dataset, we train the model for a total 
of 150 epochs, and the batch size is set to 128. The learning rate for each optimizer is selected by a grid search, 
and decays by 0.2 at the 50th and 100th epochs. For the ResNet50 experiments on the CatDog dataset, we train 
the model for 200 epochs, and the batch size is set to 128. Similarly, the initial learning rates are determined 
by a grid search, and decay by 0.2 at the 90th and 150th epochs. To achieve stable performance, we repeat each 
experiment ten times. Then, we draw the loss/accuracy curves for both the FN and the baseline models using 
median statistics. For illustration, we summarize the results of AlexNet on CIFAR10 and ResNet50 on CatDog 
in Figs. 4 and 5, respectively.

From these figures, we find that the FN models have a relatively lower loss than the baseline models during 
training. Furthermore, compared to the baseline models, the FN models reach the same prediction accuracy level 
in fewer epochs. In addition, the final prediction accuracy of the FN models on the testing set is slightly higher 
(approximately 1–2%) than that of the baseline models. Consequently, the time required for the FN models to 

Figure 2.  LR stands for logistic regression and FN stands for factor normalization. The left panel shows the 
training loss of the logistic regression model and FN model optimized by SGD on MNIST images. The right 
panel shows the prediction accuracy on the testing dataset. Different numbers of factors are considered (i.e., 
d = 1, 2, 10).
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reach optimal baseline prediction accuracy is less than that required by the baseline models. It is worth noting 
that the time required to conduct SVD in the FN model is preprocessed before training, which is significantly less 
than the training cost. In summary, we found that the FN model can improve the performance of the baseline 
model in terms of time cost, training loss, and prediction accuracy. Similar conclusions can be drawn from the 
results for ResNet50 on CatDog in Fig. 5.

Figure 3.  Here, the top panel is the training loss in log scale for the baseline model (blue dash line) and FN 
model (red solid line) with four different optimizers. The bottom panel shows the testing accuracy for the 
baseline model (blue dashed line) and the FN model (red solid line) with different optimizers.

Figure 4.  Results of training AlexNet on the CIFAR10 dataset. The top panel shows the training loss of the 
baseline (blue dashed line) and FN models (red solid line) with four different optimizers. The bottom panel 
shows the testing accuracy of the baseline (blue dashed line) and FN models (red solid line) with different 
optimizers. The curves represent the median training loss and testing accuracy of the ten repeated experiments.
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Conclusion
In this paper, we propose a novel factor normalization method for fast DNN training. This concept was inspired 
by the fact that many DNN models involve high-dimensional features, and these features often exhibit a strong 
factor structure. The proposed method has three key components. First, it decomposes high-dimensional input 
features into two parts: a factor part with low dimensionality and a residual part. Second, it slightly modifies a 
given DNN model so that the effects of the latent factor and residual features can be processed separately. Last, 
to train a modified DNN model, a new SGD algorithm is developed. This allows for adaptive learning rates for 
the factor and residual parts.

To conclude this article, we present here a number of interesting topics for future study. First, our current FN 
model performs factor decomposition on the input features. Even if different components of the input feature are 
completely independent of each other, the resulting feature map after multiple convolutional layers might still 
have a strong factor structure. Therefore, it is worth studying whether factor decomposition should be conducted 
for feature maps. Second, the current FN model does not insert the estimated factors back into the DNN models 
until the last layer. As such, determining what happens if the estimated factors are inserted into earlier layers is 
another problem of great interest.
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